‹ Back to publications

Pharmacological differences between rat frontal cortex and hippocampus in the nicotinic modulation of noradrenaline release implicate distinct receptor subtypes


Noradrenergic mechanisms in frontal cortex and hippocampus are relevant to attentional and stress-related aspects of addiction, respectively. Nicotinic receptors (nAChRs) modulate the release of noradrenaline (NA) in these tissues. This study determined if similar subtypes of nAChR regulate NA release in rat frontal cortex and hippocampus.


The release of [(3)H]-NA from rat tissue prisms was characterized in a 96-well plate assay. In vivo microdialysis was used to monitor NA overflow from rat frontal cortex and hippocampus in conscious freely moving rats.


[(3)H]-NA release from frontal cortex prisms was more sensitive to nicotinic agonists than release from hippocampal prisms. The β2-selective agonist 5-iodo-A-85380 was 1000-fold more potent in frontal cortex compared with hippocampus. Agonist-evoked [(3)H]-NA release was inhibited by the β2-selective antagonist dihydro-beta-erythroidine (DHβE) in frontal cortex, whereas in hippocampal tissue, DHβE had no effect. In vivo, 5-iodo-A-85380 (1, 100 μM) applied locally via the dialysis probe, significantly increased NA overflow, compared with basal release, in frontal cortex but not in hippocampus.


These data support the modulation of NA release by different nAChR subtypes in frontal cortex and hippocampus. The pharmacological profile for rat hippocampus is consistent with previous studies, implicating α3β4* nAChRs in the modulation of NA release in this tissue. nAChRs having this function in frontal cortex are pharmacologically distinct and correspond to β2-containing nAChRs.

Ref: Nicotine Tob Res 14(11): 1339-1345, 2012.

Read More




Kennett A, Heal DJ, Wonnacott S

Contact us

For more details or information on how we can support your project please complete the contact form.